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Abstract

This paper introduces a class of robust lag-k smoothers based on simple low
order Markov models for the Gaussian trend-like component of signal plus non-
Gaussian noise models. The k th order Markov models are of the kh difference
form A&rt = et where Q) = x.- x t-1; and ej is a zero-mean white Gaussian
noise process with variance a2. The nomial additive noise is a zero-mean white
Gaussian noise sequence with variance a,, while the actual additive noise is non-
Gaussian with an outliers generating distribution, e.g., (1 - 7)N(O, a) + -TH.
This setup is particularly appropriate for radar glint noise. Implemenitation of
the smoothers requires estimation of the two parameters or2 and c?, This is
accomplished using a robustified maximum likelihood approach. Application
to both artificial data sets and to glint noise data reveals that the approach is
quite effective. We briefly discuss the choices of lag k for the smoothers and
also briefly study the sensitivity of our approach to model mismatch.

'Supported by Office of Naval Research Contract N00014-86-K-0819



1 Introduction

The motivation for this paper is the desire to construct robust fixed lag smoothers

which work well on radar glint noise, and which have a simple structure with at

most a few parameters to estimate. We achieve this end by both generalizations and

specialization of known methods (Martin, 1979; Martin and Thompson, 1982) for

constructing robust filters which are insensitive to outliers.

One generalization consists of building on the known robust filter algorithms to

obtain robust fixed-lag smoothers. The emphasis here is on fixed-lag smoothing, as

opposed to the use of existing robust fixed interval smoothers (e.g., as in Martin,

1979; Martin and Yohai, 1985), because we ultimately wish to use such smoothers in

real time applications.

A second generalization is that of estimating the model parameters, including the

standard deviation of a nominally Gaussian additive noise model, using a robustified

maximum likelihood method.

The specialization is guided by our prior knowledge about radar glint noise. Such

noise contains both a low frequency approximately Gaussian trend-like core compo-

nent, and a broad-band highly non-Gaussian component associated with glint noise
"spikes" or outliers. The goal of the robust smoothing is to produce a smooth ver-

sion of the trend-like core component. Prior experiments (Martin and Thomson,

1982) with robust autoregressive model fitting and robust smoothing indicatc that

the trend-like component is well modeled by I'", 2 ,d or at most 3 'd order autore-

gressive models with parameters on the boundary of nonstationarity. More precisely,

state variable models wherein 1 t , 
2 nd or 3rd differences of the state variable are

equal to a Gaussian white noise innovations process have appeared to work quite well

(correspondingly the state variable is once, twice or thrice "intergrated" white noise).

Thus our specialization is to use such simple state variable models to model the trend-

like component. Correspondingly, it is not necessary to estimate the autoregressive

parameters in the state variable model, only an estimate of the innovations variance

a2 for the state process is required.
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It is assumed that there is additive white noise vt which is well modeled by the

mixture model

F =(1- )N(0,a') + YH (1)

with Gaussian central component N(O, ao'), and with contamination distribution H.

The latter is a heavy-tailed outliers generating distribution which accounts for the

glint noise spikes.

Past experience shows that it is not terribly important to estimate the fraction

of contamination -y - presumption of any value in the range .1 to .25 will usually do

quite well. However, estimates of ao is quite important, since a' and oa, determine

the degree of smoothing of our smoothers, just as in the case of linear smoothers.2 2
Thus there are just two unknown parameters, ao and a., to be estimated.

There is also a "tuning constant" c which controls the tradeoff between robustness

and efficiency for the robust smoother. This constant can be set in advance using the

study of Martin and Su (1985) for guidance.

The paper is organized as follows. Section 2 reviews robust filters for the state-

variable setup of interest. Section 3 presents robust fixed-lag smoothers. Section 4

discusses the robust estimation of the unknown model parameters a2 and a2. Section

5 presents the application of the method to the radar glint noise data. Section 6

discusses the choice of lag. Section 7 considers the issue of sensitivity of the method

to model mismatch. Section 8 contains some concluding remarks.

2 The State Variable Setup and Robust Filters

2.1 The State Variable Setup

Suppose that the scalar observations y, ..- y- are generated by the following state-

variable system:

t = CDt- + et (2)
yt = Hxt +vt,



where z, and et have dimension p, D is a p x p matrix and H is a 1 x p matrix.

It is also assumed that xt is independent of future et, and that ej, vt are mutually

independent sequences which are individually independent and identically distributed

(i.i.d). The innovation process et for the state equation is assumed to be a white noise

zero mean Gaussian process with covariance matrix Q. The additive noise process vt

is assumed to be zero mean white noise non-Gaussian mixture distribution given by

(1).

An example of this system is the pth order autoregression

P

It O ixg.._ + C,. (3)

This model has the above state-variable form with

01 0, ... O- ebp

1 0 ... 0 0

-= 0 1 ... 0 0 (4)

0 0 ... 1 0

H = (1,0,... ,0)

The notation to be used throughout is as follows. Denote the first t observations

by Yt = (yi,...,yt). The state prediction density is f(xt+liYt) is the conditional

density of zt+l given Y'. This density is assumed to exist for t > 1. The observation

prediction density is f(yt+j1Yt). The conditional-mean estimate of xg given yt is

written it = E(xtIYt) and the conditional-mean predictor of xt+l given Yt is written

~t -= E(xt+1IYt ). The conditional-mean estimate of xt given Y+' for a fixed

constant I > 0, is written tt+' = E(xtYt+'). This estimate is called a fixed-lag

(lag 1) smoother. Assuming they exist, these conditional-means are the minimum

mean-squared-error linear estimates given ' or y'+' (Meditch, 1969).
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2.2 The pth Order Difference Models

In this subsection, we describe the pth order difference model and its state variable

setup. The p" order difference model is defined as

i-APxt = ft

where

'Xt = t - Xt_ 1

APxt = AP-Ixt _ AP-IxtI,

and et has a white noise Gaussian distribution with mean 0 and variance a,2. These

models are the nonstationary limiting case of stationary autoregressive models as the

coefficients tend to particular points on the boundary of stationarity. For example,

the 2" order (p = 2) differences model can be presented as

Xt = 2xt-, - Xt-2 + ft

which is the same as in (3) with 01 = 2 and ¢2 = -1. So the state variable setup for

the pth order difference model is similar to (4) with Op, ... , q, appropriately specified.

As we mention in the introduction, the difference models with order p < 3 are

used for our fixed-lag smoothers. We now present the state variable setup for the
1st, 2d' and 3 d order difference models. The 4, H, e and z for each order are as

follows.

Case p = 1:

q =1
Xt -- t

H =

Et -- t .

Case p = 2:

2~=( -1)
1 0
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XtT  =(Xt, Xt-1)

H = (1,0)
T 0).

Case p - 3:

1= 0 0

0 1 0

T T
= (Xt, Xt..., Xt-. 2 )

H (1,0,0)

ET =(f 0,0).

The choice of such state variable models for smoothing problems is motivated by

the connection between continuous time versions of such models and spline smoothing

(see for example, Wecker and Ansley, 1983).

2.3 Masreliez's Filter

We now discuss the methods for estimating the conditional means of xt given Y in

the system (2). When et and vt in system (2) are Gaussian, the straight forward

computation of it = E(xtlYt) by any one of a variety of techniques (Jazwinski,

1970) yields the Kalman filter recursion equations. Unfortunately, the explicit and

exact calculation of it in closed form is virtually intractable when vt is non-Gaussian,

except in a few special cases, e.g., as in the case of stable random variable (see Stuck,

1976). However, there is a simplifying assumption, discovered by Masreliez (1975),

which allows one to make an exact calculation of ;bt. Masreliez's assumption is that

the state predictor density is Gaussian

f(xt II') = N(xt; i t-',It) (5)

where N(.;.u, E) denotes the multivariate normal density with mean it and covariance

matrix E, and

M, = Ef(x,- t- ( tjt-,)T 1yt-1}. (6)

. . . . . ,,, n m , m e - - -- m n • m m U l m m • I I



is the conditional covariance matrix for the state prediction error. Under this as-

sumption, Masreliez (1975) showed that it = E(xtlYt), k > 1 can be obtained by

the recursions

it = i' + MtHxt(yt) (7)

Mt+I = $PtT +Q (8)

Pt = Mt- AMtHT1P'(yt)HMt (9)

where

_= )log MfY tlY-) (10)

is the "score" function for the observation prediction density fy(ytjYt-1), Q is the

covariance matrix of et, =P and
4 't(yt) -- ( )'P (y,). ( 1

Comments and discussions on the appropriateness of Masreliez's assumption and

the validity of the representation (7)-(10) can be found in Martin (1979), and Fraian

and Martin (1988).

2.4 ACM-Type Robust Filter for Autoregressions

Utilizing the Masreliez result, Martin (1979) suggests an approximate conditional

mean (ACM) type robust filter described as follows. Let ao0 be the variance of the

Gaussian component of the distribution (1) for vt, and let IF be a robustifying psi

function as in the robustness literature (see for example, Huber 1981; Hampel et al

1986). Set
2 + 2

=t mlk +0O

where mlk is the 1-1 element of Mt the state prediction error covariance matrix. Then

the recursions (7)-(9) are replaced by

ice = 'Fx,_ + -- h-1Ik(j-) (12); st

.I,+j = )pP T + Q (13)
Pt -=(r Mfl-t1 ) (14)

S t St
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where mt is the first column of Mt and rt is the observation prediction residual
rt=yt - i.t-1.

t t-

Two possible choices of w are

zV(rt) = 'r)(15)

by analogy with (11), or

w(rt) crt (16)

There are many possible choices for the psi-function in the robust filtering context.

These choices are described in Martin (1979, 1981), Martin and Su (1985). The main

qualitative characteristics of a good robustifying 4' is that V) should be bounded and
"redescending". For example, Hampel's two-part redescending function defined as

'!HAc(Y) ( -(c-y)/(ck-1) ac<y<c (17)
-(c + y)/(1 - e) -c <_ y < -ac
0 IYl > c

has these features. Throughout this paper, we use T1 HA,x with ac = 1.6 and c = 4.0.

These are values suggested by the study of Martin and Su (1985).

We make the choice (16) in this paper since it has a continuity/resistance rationale

(see Martin and Su, 1985): the w in (16) is continuous for piecewise linear 'c, whereas

the w in (15) is discontinuous.

3 Robust Fixed-Lag Smoothers

3.1 Robust Fixed Lag Smoothers

The above robust filter can be used to obtain a robust fixed lag (lag 1, for some 1 < n)

smoother for quite general state equations by augmenting the state equation (see for

• . . . , , i III I II I I I I I I7



example, Anderson and Moore, 1979). In this approach, the state-variable system (2)

is augmented as follows:

Zt = izt-l +
yt = Hizt + vt, (18)

where
4 0 ... 0 0

I 0 ... 0 0

01= 0 1 ... 0 0

0 0 ... I 0

H1 = (H,0,...,0)
(CI)T = ( ,0)..

The vectors z,, el have dimension p(l + 1). 4) is a p(( + 1) x p(I + 1) matrix. H1 is

a 1 x p(l + 1) matrix. So for 0 < i < 1, the robust fixed lag (i) smoother is just the

(i + 1)th element of it = E(ztlYt). The conditional-mean vector it is obtained by

the robust filter.

The state-augmentation approach to fixed 13g smoother construction results in

state vectors and matrices with dimension proportional to the desired lag. In par-

ticular, the dimensions increase by p if the lag is increased by 1. In general, this

may become computationally burdensome. However, this problem can be avoided for

special case of autoregression type state equations since there is a lower dimensional

augmentation in such cases. For the pth ,,der autoregression (3), including the pth

. - i iI lS



order difference model, with lag I > p, we can use (17) with

01 02 ... p 0 ... 0 0

1 0 ... 0 0... 00

0 1 ... 0 0 ... 0 0

00.. = (19)0 0 ... 1 0 ... 0 0

0 0.. 0 1 ... 0 0

0 0 ... 0 0 ... 1 0

,_T =

HI = (1,0,...,0)

T = .... 0).

The vectors zt, HI, E' have dimensions (I + 1), and 4'1 is a (1 + 1) x (I+ 1) matrix.

With this augmentation method, the dimension increases by units of order 1 if the

lag is increased by 1. More detail on reducing dimensionality can be found in Moore

(1973), Anderson and Moore (1979).

3.2 The p'h Order Difference Model Case

For the pt' order difference model, we can obtain the fixed-lag smoothers (lag 1 to

lag 1) by using the setup in (18). Recall that the p" order difference model is just the
pth order autoregressive model with op..., € appropriately chosen. To illustrate the

approach more specifically, we present the detail of how to obtain the lag-2 and lag-5

smoothers with the 2' order difference model. This would hopefully help to explain

the method more clearly. Using the setup (18), the 2 d order difference model for lag
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5 smoother can be presented by

2 -1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 1 0

ZT = ( X,,t ,_ 1, , _2, X,_3, , Xt_5)

H, = (1,0,0,0,0,0)

(EI)T = (C,,0,0,0,0,).

Suppose that the parameters o2, 27 and the tuning constant c are known, we can

obtain the conditional mean of the vector random variable zt conditioned on the
observations yz, ..., yj by using the ACM-type filter algorithm described above. The
lag-2 smoother, zit-2 = E(x,_2 lYt), is then the 3 "d component of it. The lag-5

smoother is then the 6
t ' (last) component of it.

However, the parameters a2 and a2 are unknown and need to be estimated. In
the next section, a method for estimating these parameters with p' order difference

model is discussed.

4 Parameter Estimation

4.1 Robust Maximum Likelihood Type Estimation

Suppose that the observations Y1, ..., y,, are generated by the system (2) with Gaussian
additive noise, i.e., noise distributed as (I) with -y = 0. The Gaussian maximum
likelihood estimates of the parameters a2 and a,2 are obtained by minimizing the log

likelihood function
-- i - (( 0 ,

1(a2, o2) = n log(2r) + log s(2 0o,) + V I ce0)f(20)0lg= i f S?(7o", 1)

10



with respect to 0,. and &,, where '-' and .5? are obtained by the usual Kalman filter

recursions (obtained from the robust filter with c = oo).

However, the initial value PO is undefined for the case of p"' order difference model

because of its nonstationarity. To avoid this difficulty, Harvey (1981) suggests that

one can choose

P0 =AI

where A is large scalar and I is the identity matrix. Using this initial value, one can

ignore the first k observations in calculating the log likelihood function for some small

integer k. Throughout the paper, A is chosen to be the square of the range of the

data and xo = 0. The log likelihood function (19) is then defined as
n n 2 2-- ))_1(a', a, = n log(21r l3?a")+ E (y V S 2) (21)

i=k+l i=k+1

To robustify the ML approach in the case of additive outliers which occur when

-y > 0 in (1), we propose that the parameters ao2 and a' be estimated by minimizing

the 'robustified' log likelihood type loss function

= log3s(a2oOa,)+ E ) (22)
i=k+l i=k+l 8

where

pc) {2 1X - cl~ciPc'(X)- 2c lixI - c 2lx > c,
is the Huber (1964) loss function with "tuning" constant cl.

In our examples and applications to radar glint noise, we have chosen the integer

k to be about 5 percent of the total number of observations and cl is chosen to be

1.2 as suggested by the study of Martin and Su (1985).

The exact calculation of estimates &. and & which minimizes (22), in closed

form is intractable, and one needs to employ some numerical methods for minimizing

1. Since we only have to estimate two parameters, a simple brute force numerical

method is possible. Evaluate the function i on a grid of values of o, and a2, and

choose the grid value that minimizes i. This is the method we use for our examples

and applications.

11



When the model for the data is correct, the log likelihood function should behave

nicely, that is, it is approximately convex and locally quadratic near the minimum

so that the minimum is easy to be detected. Likewise, one expects the robust loss

function. ' to have similar behaviour if the model is correct. However, if the model

is incorrect, the log likelihood and robust loss functions may exhibit poor behaviour,

e.g., there may not be a clear minimum of the function. This behaviour is clearly

exhibited in the application of the method to some artificial data sets and the radar

glint noise data.

In the next subsection, we present two examples to illustrate how the method

works. We use artificial data sets in these examples, one with the nominal variance

in (1) o2 = 0 and another with o' > 0. We also examine how the robust loss

function l behaves when incorrect (mismatched) models are used in these examples.

4.2 Examples

Example 1: (o = 0)

A sample of 200 data points is generated from a contaminated autoregressive

model of order one with = 1 (i.e. the first order difference model) and zO = 0.

The model is

t = Xt- 1 + Ct

lit = Xt + Vt

where et is white noise standard Gaussian process and vt is generated from (1) with

=2 = 0, -y - .1 and H N(0, 25). Thus there is no nominal additive Gaussian

noise to contend with, and 1 i(aQ) depends on just one parameter, the innovation

variance a,2.

The data are plotted in Figure L.a. The plot shows that there are big spikes in
the data and the nonstationarity of the data is rather obvious.

The loss function l(o 2) was evaluated for 100 values of a2 equally spaced from .1
to 4. The results, displayed in Figure 1.b. show that the function is quite smooth and

essentially convex. The minimum value of i(a') is 342.6, occurring at 62 = 1.30.

12



To illustrate how the robust loss function I behaves when the incorrect model

is used, we repeat the above process with 2 4 and 3
"d order difference models used

for constructing the predictor -. The values of 1 corresponding to the incorrect

assumptions of 2' d and 3 d order difference models are plotted in Figures .c and l.d

respectively. Not only are the minimum values of !, based on incorrect assumptions

of 2 1 and 3 "d order difference models considerably larger than that when the correct

model is used, 1 also looses its smoothness and convexity when the incorrect model is

used. Greater roughness occurs when the model mismatch is greater. The extensive

degree of roughness associated with model mismatch surprised us a bit. Perhaps this

behaviour provides a tipoff that the incorrect model is being used.

To demonstrate how well the fixed-lag smoothers work using the estimated value

of a,, we display the data in Figure 2, along with lag-k smoothed values for k = 0, 2

and the corresponding state estimation residuals. Figure 2.a shows the observed data

and the lag-0 smoother i, while Figure 2.b shows the corresponding state estimation

residuals xt - i'. Note that under the assumption that ao 0, we have --t =

and i = yt much of the time. Correspondingly the residuals zt - i are zero much

of the time. Results for the lag-2 smoother j+2 are shown in Figures 2.c and 2.d.

Figures 2.a and 2.c show that the lag-0 and lag-2 smoothers follow the data quite

well and they are successful in removing both moderate and large outliers. Overall,

the state estimation residuals for the lag-2 smoother (Figure 2.d) tend to be smaller

than those for the lag-0 smoother (Figure 2.b), as one would expect.

Example 2: (o 2  0)

Again 200 observations are generated by the same model as in the first example

except that now or2 = 4 and H - N(0, 50). Thus there is a nominal additive

Gaussian noise variance a,2 > 0 which we need to estimate. So now l(a,2 , ' ao2 )

is a function of the two unknown variances a2, a.

The data is displayed in Figure 3.a. The outliers are now a bit less obvious because

of the N(0, 4) Gaussian component of v,, but they are none the less present. The

loss function I was evaluated for 100 values of a2 equally spaced from .1 to 4 and 100
values of a02 equally spaced from .1 to S. The contours of this function are plotted

against o,, and ao in Figure 3.b. The plot shows that the function is quite smooth and

13



approximately convex so that the minimum is quite easily located. The minimum of

684.4 is obtained at a 2 = 5.0 and & = 1.3.

In Figures 3.c and 3.d respectively, we show the contours of the function i based

on the use of incorrect 2' and 3 d order difference models to construct P-'. The

plots suggest that local convexity of I is still present, and the roughness of I associated

with a mismatched model is not nearly as great as in the previous example where we

set a; = 0. For the case of an incorrectly used 2"" order model, the minimum of

is 702.9, occurring at &2 = 6.6, &, = .035. While the estimate &2 is increasing,

&2 is decreasing and quite smaller than the true value a,2 = 1. When using an
incorrect third order model, the estimate &2 = 7.4 is large compared with the

true value ao = 4; however, the really dramatic effect is the extremely small value
&' = .0006. These results indicate that when a mismatched model of higher order is

used, the observation variance will be overestimated and the innovation variance will

be underestimated, and that this effect will be greater when the degree of mismatch

is greater.

Note that the larger the observation variance is, the "smoother" the conditional

expectation O-I would be. In addition, the use of higher order difference model

intrinsically leads to more smoothness.

In Figure 4, we plot the observations along with the lag-k smooths, and the state

estimation residuals for k = 0, 2. The results are as one might expect. The lag-2

smoother (Figure 4.c) shows much more smoothness than the lag-0 smoother (Figure

4.a). The state estimation residuals from the lag-2 smoother are also noticeably

smaller than those for the lag-0 smoother.

14



5 Application to Glint Noise Data

5.1 Description of Data

In Figure 5, we display a segment of radar glint noise data encountered in radar

tracking of aircraft targets. The ordinate values are the apparent line-of-sight angles of

the aircraft (in degrees), measured from baresite of the fixed position radar dish. The

origin of the ordinate corresponds to a right-angle side view of the aircraft situated

in a level position. The exceedingly spiky outlier prone behaviour of this process is

due to interference from the multiple returns of the radar signal reflecting from the

various components of the aircraft structure (e.g., wing leading edges, tails, cockpit,

etc.). The spikes are often huge, sometimes giving a misindicator of true angular

position by as much as 1000 or more. In spite of having an extremely non-Gaussian

character (see Hewer, Martin and Zeh, 1987), the process has often been treated as

being Gaussian in engineering analyses. Needless to say, such analyses may be quite

misleading.

The radar glint noise also contains a low-frequency trend-like component which one

can see in Figure 5 (eyeball a smooth curve through the data). This low-frequency

component, called "bright spot wander", represents the electromagnetic center of

gravity of the aircraft, which obviously changes (slowly) as the aircraft rotates.

5.2 Model Estimation

Prior experiments (Martin and Thompson, 1982) with robust autoregressive model

fitting and robust smoothing indicate that the trend-like component in radar glint

noise is well modeled by Il, 2nd or at most 3rd order autoregressions with parameters

on the boundary of nonstationarity. Thus, for this data it is natural to use the simple

approach based on 11, 2nd and 3 rd order difference models and robust estimation of

the parameters a! and al. We examine two cases, one with the assumption a' = 0

and another without this assumption. Employing the estimation procedure described

in Section 4, we obtained the following results.

Assuming that ao = 0, the robust loss function I for 1", 2nd and 3rd order

15



difference models, are evaluated and plotted in Figure 6, (a)-(c) for I " through 3rd

order difference models, respectively. The estimates &2 and the values of the loss

function 1l(&') are presented in Table 1.

Table i: The estimates &I and !(&,).

Order 62 &2

1° t  177 3997.4

2nd 205 4468.8

3 rd 389 5206.3

On the basis of minimum 1, one is clearly led to prefer the first order model. We

note also that whereas the function i = l(a') is rather smooth and nearly convex

for the i' t order model, 1 becomes increasingly rough and non-convex for the 2nd and

3
rd order models. This is further evidence that the 2"1 and 3 rd order models are

inappropriate.

The glint noise data and the lag-3 smooths corresponding to the estimated 1 t , 2n4

and 3
,d order difference models are plotted in Figure 7 (a rationale for the choice of

lag-3 is provided in the next section). We plot only the first 300 data points so that

the behaviour of the smoothers can be easily examined. Figure 7.a shows that for

the first order model, the lag-3 smoother is quite successful in chopping off the large

spikes/outliers, and otherwise follows the data. This is as expected because of the

assumption a0 = 0, according to which a "data-cleaner" behaviour is expected (see,

Martin and Thompson, 1982). However, the smoother perhaps does not chop off the

more moderate sized spikes as effectively as one might wish.

Figure 7.b shows that for the second order model, the lag-3 smoother does not

behave quite so well. It overshoots in a few places, and is consequently not as effective

in chopping off the spikes. The behaviour of the lag-3 smoother for the 3V order

model, shown in Figure 7.c, is even worse in this regard. The behaviour of the

lag-3 smoothers for the 2 ,d and 3 d order difference models are consistent with our

observation that these models fit poorly using the minimized i as a criterion, under

16



the assumption that 0,. = 0.

We now consider the case where o2 >! 0 is treated as an unknown, and the two
parameters a0 and a,2 are estimated by minimizing the robust loss function 1. The
estimates &02 and &, and the values of the loss function l(&2,&) are presented in

Table 2.

Table 2: The estimates &2, &2, and I(&2, &e).

Order P0 &)

let 57.2 73.10 3968.5

2n4 129.4 1.62 4073.3

3' 154.1 .04 4176.6

The contours of 1 are plotted in Figures 8a, b, c for the 11, 2" and 3 rd order

difference models respectively. As in the artificial Example 2 of Section 4, the surface

appears most smooth and nearly convex for the first order model, with some degra-

dation in this respect for the 2' and 3
"d order models. On the basis of minimum 1,

the first order model is again preferred. Using this model, the robust loss function at-

tains a minimum value of 3968.5, which is smaller than the minimum value of 3997.4

obtained in the case when it was assumed that -0 Thus from the robust loss

function point of view the assumption o2 > 0 leads to a better model fit.

The original glint noise data (first 300 points), and results of applying the lag-3

smooths are displayed in Figures 9a-c for the 1"t-3rd order models, respectively. The

lag-3 smooths in Figure 9a for the first order difference with &2 = 57.2 exhibit

more smoothness than those in Figure 7a for a first model difference model with

the assumption o2 = 0. Note however that for the 2'1 and 3 rd order models, the

combination of higher order and larger ratio c32/3' of estimated variances results in

considerably increased smoothness.

Actually, if one takes a "smoothing for visual display" point of view, the second or-

der model lag-k smoother shown in Figure 9.b provides a most pleasing presentation:

It fits a more smooth curve through the data than in the case of the first order differ-
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ence model, and the use of a third order difference model yields little improvement

over the second order model.

6 Choice of Lag

In the previous section we displayed results for lag-3 smoothing of radar glint noise.

The choice of lag 3 for this particular example was determined empirically by ex-

amining the quality of the smoother for various lags. The reason for this is that an

analytical approach for choosing k is not feasible for robust smoothers because of their

nonlinear structures (by way of contrast, in the case of the linear Kalman smoother,

the lag k might be chosen to achieve a mean-squared error within a specified factor

of the fixed interval smoother mean squared error, the latter being the best that one

can do).

Figures 10 and 11 display robust lag-k smoothers for k = 0, 1, 3, 5 for the first

and second order difference models respectively where both 0. and o,2 are estimated.

For the first order model there is not a great deal of difference in the quality of the

smooth for various lags, there being only a slight amount of increased smoothness

with increasing lag. For the second order model there is a noticeable increase in

smoothness with increasing lag k, and most of this increased smoothness seems to

be achieved at k = 3. Thus we displayed the k = 3 results for both first and second

order models in the previous section.

To study the behaviour of the fixed-lag smoothers for different lags in a more

systematic way, we carry out a simulation study as follows. We generated 50 time

series of length 200 from the process

Yt -- Xt + Vt

where xt is a first order autoregression with standard normal innovations Et, and vt is

a contamination process containing outliers.

In this simulation experiment we introduce a new consideration, namely the pos-

sibility of patchy outliers of various lengths. The basic question to be addressed in

this regard is whether the use of longer lags k in the lag-k robust smoother would be
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helpful in dealing with patchy outliers. Thus we construct outlier patches of lengths

1, 2 and 3 by the following way. For each sample path, the process xt are contami-

nated by non-overlapped patches of outliers, independently generated from N(O, 25).
The positions of the patches are randomly chosen. For all three patch lengths, there

are 20% of outliers in total.

The robust lag-k smoothers performance is evaluated by computing for each sam-

ple path the mean-squared error for smoothing at outlier positions (MSE) and

non-outlier positions (MSE 2) separately:

MSE, = ;1 E (t+k_ -X)2
M9:tfi,$Ol t:v,#O

MSE2 = 1 (it+k - Xt) 2 .
t-O I t:V-O

The above mean-squared errors are computed for each of the 50 sample paths.

The boxplots of both MSEs for lag k, k = 0, 1,...,5 are displayed in Figure 12 for

patches of length 1, 2 and 3. The results for MSE are shown in Figure 12a, b, c,

while the MSE2 results are shown in Figure 12e, f, g.

These plots show that:

(a) Both MSE and MSE2 increase with increasing patch length.

(b) MSE has a nearly syrLmetric. eistribution (with an upper tail slightly heavier

than the lower tail) for patches of length one, and an increasingly asymmetric

distribution skewed to the right for increasing patch length.

(c) MSE2 has an asymmetric distribution, with an u- per tail considerably heavier

than the lower tail, for all 3 patch lengths.

(d) For all these patch lengths both MSE, and MSE2 essentially reach their opti-

mum, namely a distribution must compact toward zero, by lag k = 3.

(e) MSE2 does not settle to zero with increasing lag.

The behaviour (e) has to do with the fact that the presence of outliers has an

effect on the smoother at non-outliers positions. While this behaviour is not entirely
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unavoidable, one wonders whether robust lag-k smoothers can be constructed with

smaller mean-squared error at non-outlier positions.

The result (d) is consistent with our choice of k = 3 for the i" order difference

model lag-k smoothing of radar glint noise in Section 5. To make sure that k = 3
is reasonable for the 2' order difference model we should probably run the above

experiment based on such a model. More generally, this type of simulation would

appear to provide useful guidelines for selecting k for robust lag-k smoothing for a

wide range of state space models.

7 Sensitivity To Model Mismatch

We have proposed a simple approach to robust smoothing which involves estimation of

only two parameters by virtue of assuming that the core part of the data is well mod-

eled by low order difference models, thereby avoiding the estimation of autoregression

(AR) or autoregression-moving average (ARMA) parameters. One wonders how the

method will work when the core part of the data in fact comes from a stationary AR

or ARMA model, with parameters "reasonably near" the boundary of nonstationary.

To get a feeling for how our approach would work under such "mismatch" conditions

with regard to the estimation of a. and a, we carry out a simulation study for the

AR(1) case.

Specifically we generate xt as a first-order Gaussian autoregression with = .5,

.9, .95, .98, 1 and standard normal innovations ct, and use the estimation approach of

Section 4 assuming a first difference model. The xt are contaminated with additive

outliers vt which has the distribution (1) with nominal variance a2 = 0 (and so we

do not estimate oa) and H N .(0, 25). The contamination fraction -y is chosen to

be 0, .1, .2 and .3. For each combination of - and 0, 100 time series of length 200

are generated. For each series, the robust loss function i(o2 ) is evaluated, and the

estimate &, which minimizes the loss function is obtained. The means and standard

deviations of the estimates &' are presented in Table 3.

The results show that the means (and of course the standard deviations as well)

increase with an increasing fraction contamination -y. The means and the standard
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Table 3: Estimates of E&, obtained via Monte Carlo (sample standard deviations of

estimates in paratheses)

True -f = 0 -Y = .I -y = .2 -. .3

0.50 .91 (.16) 1.51 (.36) 2.24 (.48) 3.41 (.96)

0.90 .92 (.13) 1.43 (.27) 2.20 (.47) 3.45 (.82)

0.95 .94 (.12) 1.47 (.27) 2.28 (.53) 3.40 (.82)

0.98 .96 (.14) 1.47 (.25) 2.27 (.57) 3.39 (.88)

1.00 .93 (.13) 1.46 (.29) 2.22 (.50) 3.33 (.77)

deviations are relatively constant with respect to changing 4). This suggests that

our method is quite insensitive to model mismatch as far as estimation of a, goes,

when it is known that . - 0. Except for the case 0% contamination in which the

, !timated values are biased downward, the estimated values &, for other cases are

biased upward. Although the biases in the estimates of a,2 appear to be large when

-y > 0 , the biases of &, as an estimate of the standard deviation a, are not nearly so

large.

It is customary in robust estimation that biased estimates are standardized so as

to be unbiased at the nominal model (i.e., 4 = 1 and -f = 0 in this case). This

standardization is accomplished in the present case by dividing the estimate &, by its

asymptotic value EO.b,. To do this one needs to know the asymptotic value EOO& of

the estimate at the nominal model. Sometimes, it is possible to calculate such values

analytically or using numerical integration (see, e.g., Hampel et al, 1986). This is not

possible in the present case. However, asymptotically a sufficiently accurate estimate

could be obtained by a very long simulation study in this case.

One should also study the effect of model mismatch on (i) joint estimation of a2

and o2 , and (ii) lag-k smoothing mean-squared error. We expect to do this in the
near future.
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8 Concluding Remarks

For on-line applications of our method, the crude grid-search approach to optimization

needs to be replaced by an on-line gradient or Newton type approach. This may be

accomplished via a stochastic approximation type algorithm (see for example, Albert

and Gardner, 1967).

In view of the perhaps uncomfortably large biases for a, exhibited in Table 3 for2
-t > 0, we wonder whether a more robust estimate of a, can be obtained by some

modification of the robust loss function approach described in Section 4.
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FIGURE 1: DATA AND ROBUST LOSS FUNCTION
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Figure 2: DATA (-)AND FIXED-LAG SMOOTHERS )
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FIGURE 3: DATA AND CONTOURS OF THE ROBUST LOSS FUNCTIONS
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Figure 4: DATA (-)AND FIXED-LAG SMOICOTHERS()
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Figure 5: RADAR GLINT NOISE
C

II I II

0 50 100 150 200 250 300

Time

(a) THE FIRST 300 DATA POINTS

0U

C

300 350 400 450 500 550 600

Timm

(b) THE SECOND 300 DATA POINTS



FIGURE 6: THE ROBUST LOSS FUNCTION FOR RADAR GLINT NOISE
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Figure 7: RADAR GLINT NOISE (-)AND LAG-3 SMOOTHER (..
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FIGURE 8: CONTOURS OF THE ROBUST LOSS FUNCTION FOR RADAR GLINT NOISE
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Figure 9: RADAR GLINT NOISE (---) and LAG-3 SMOOTHER ()
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Figure 10: RADAR GLINT NOISE (-)AND SMOOTHERS (-) USING FIRST ORDER MODEL,
ESTIMATED INNOVATION VARIANCE =73.1, OBSERVATION VARIANCE =57.2
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Figure 11: RADAR GLINT NOISE (-)AND SMOOTHERS (.-j USING SECOND ORDER MODEL,
ESTIMATED INNOVATION VARIANCE =1.62, OBSERVATION VARIANCE =129.4
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